Affiliation:
1. Departamento de Matemáticas Universidad del País Vasco UPV/EHU Bilbao Spain
2. Fakultät für Mathematik und Naturwissenchaften Bergische Universität Wuppertal Germany
Abstract
Abstract
Let 𝔔 be a reduced left-sided and left-stable quantale without zero divisors. This paper shows how the systematic use of the «quantization» of 2 viewed as a regular and strict right 𝔔-subalgebra of 𝔔 can both strengthen and simplify the rather complicated construction of quantale-enriched topologies given for semi-unital and semi-integral quantales in the original paper [3]. The underlying structure for this new construction is an adjoint situation between the dual category of semi-unital, semi-integral quantales and quantized topological spaces.
Reference12 articles.
1. Arrieta, I.—Gutiérrez García, J.—Höhle, U.: Enriched lower separation axioms and the principle of enriched continuous extension, Fuzzy Sets and Systems 468 (2023), Art. ID 108633.
2. Eklund, P.—Gutiérrez García, J.—Höhle, U.—Kortelainen, J.: Semigroups in Complete Lattices: Quantales, Modules and Related Topics. Developments in Mathematics, Vol. 54, Springer International Publishing, 2018.
3. Gutiérrez García, J.—Höhle, U.: Enriched topologies and topological representation of semi-unital and semi-integral quantales, Topology Appl. 273 (2020), Art. ID 106967.
4. Gutiérrez García, J.—Höhle, U.—Kubiak, T.: Invariance of projective modules in Sup under self-duality, Algebra Universalis 82 (2021), Art. No. 9.
5. Gutiérrez García, J.—Höhle, U.—Kubiak, T.: Basic concepts of quantale-enriched topologies, Appl. Categ. Structures 29 (2021), 983–1003.