A balancing Neumann–Neumann method for a mortar finite element discretization of a fourth order elliptic problem
Author:
Publisher
Walter de Gruyter GmbH
Subject
Computational Mathematics
Link
https://www.degruyter.com/document/doi/10.1515/jnum.2010.011/pdf
Reference19 articles.
1. Substructuring preconditioners for the $Q_1$ mortar element method
2. Iterative Substructuring Preconditioners for Mortar Element Methods in Two Dimensions
3. The Mortar finite element method with Lagrange multipliers
4. Balancing domain decomposition for nonconforming plate elements
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Schwarz Preconditioner with Face Based Coarse Space for Multiscale Elliptic Problems in 3D;Parallel Processing and Applied Mathematics;2016
2. Parallel Preconditioner for the Finite Volume Element Discretization of Elliptic Problems;Parallel Processing and Applied Mathematics;2014
3. Balancing Neumann–Neumann methods for the cardiac Bidomain model;Numerische Mathematik;2012-08-22
4. Parallel Preconditioner for Nonconforming Adini Discretization of a Plate Problem on Nonconforming Meshes;Parallel Processing and Applied Mathematics;2012
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3