Affiliation:
1. Department of Mathematics, King’s College London, Strand Campus , London WC2R 2LS , United Kingdom
Abstract
Abstract
A one-variable Hankel matrix
H
a
{H}_{a}
is an infinite matrix
H
a
=
[
a
(
i
+
j
)
]
i
,
j
≥
0
{H}_{a}={\left[a\left(i+j)]}_{i,j\ge 0}
. Similarly, for any
d
≥
2
d\ge 2
, a
d
d
-variable Hankel matrix is defined as
H
a
=
[
a
(
i
+
j
)
]
{H}_{{\bf{a}}}=\left[{\bf{a}}\left({\bf{i}}+{\bf{j}})]
, where
i
=
(
i
1
,
…
,
i
d
)
{\bf{i}}=\left({i}_{1},\ldots ,{i}_{d})
and
j
=
(
j
1
,
…
,
j
d
)
{\bf{j}}=\left({j}_{1},\ldots ,{j}_{d})
, with
i
1
,
…
,
i
d
,
j
1
,
…
,
j
d
≥
0
{i}_{1},\ldots ,{i}_{d},{j}_{1},\ldots ,{j}_{d}\ge 0
. For
γ
>
0
\gamma \gt 0
, Pushnitski and Yafaev proved that the eigenvalues of the compact one-variable Hankel matrices
H
a
{H}_{a}
with
a
(
j
)
=
j
−
1
(
log
j
)
−
γ
a\left(j)={j}^{-1}{\left(\log j)}^{-\gamma }
, for
j
≥
2
j\ge 2
, obey the asymptotics
λ
n
(
H
a
)
∼
C
γ
n
−
γ
{\lambda }_{n}\left({H}_{a})\hspace{0.33em} \sim \hspace{0.33em}{C}_{\gamma }{n}^{-\gamma }
, as
n
→
+
∞
n\to +\infty
, where the constant
C
γ
{C}_{\gamma }
is calculated explicitly. This article presents the following
d
d
-variable analogue. Let
γ
>
0
\gamma \gt 0
and
a
(
j
)
=
j
−
d
(
log
j
)
−
γ
a\left(j)={j}^{-d}{\left(\log j)}^{-\gamma }
, for
j
≥
2
j\ge 2
. If
a
(
j
1
,
…
,
j
d
)
=
a
(
j
1
+
⋯
+
j
d
)
{\bf{a}}\left({j}_{1},\ldots ,{j}_{d})=a\left({j}_{1}+\cdots +{j}_{d})
, then
H
a
{H}_{{\bf{a}}}
is compact and its eigenvalues follow the asymptotics
λ
n
(
H
a
)
∼
C
d
,
γ
n
−
γ
{\lambda }_{n}\left({H}_{{\bf{a}}})\hspace{0.33em} \sim \hspace{0.33em}{C}_{d,\gamma }{n}^{-\gamma }
, as
n
→
+
∞
n\to +\infty
, where the constant
C
d
,
γ
{C}_{d,\gamma }
is calculated explicitly.
Subject
Applied Mathematics,Analysis