Affiliation:
1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology , Vellore - 632 014 , India
Abstract
Abstract
In this article, we considered the generalized Hausdorff operator
ℋ
μ
,
ϕ
,
a
{{\mathcal{ {\mathcal H} }}}_{\mu ,\phi ,a}
on Bergmann space and determined the conditions on
ϕ
\phi
and
a
a
so that the operator is bounded. In addition, we studied the action of the Hausdorff operator on the truncated domain to estimate norm
ℋ
μ
,
ϕ
,
a
{{\mathcal{ {\mathcal H} }}}_{\mu ,\phi ,a}
and established a relation with quasi-Hausdorff operator on Bergmann space.
Subject
Applied Mathematics,Analysis
Reference7 articles.
1. A. G. Siskakis, Composition semigroups and the Cesaàro operator on Hp, J. London Math. Soc. 36 (1987), no. 2, 153–164.
2. C. Georgakis, The Hausdorff mean of a Fourier-Stieltjes transform, Proc. Amer. Math. Soc. 116 (1992), 465–471.
3. J. Xiao, Lp and BMO bounds of weighted Hardy-Littlewood averages, J. Math. Anal. Appl. 128 (2001), 660–660.
4. G. Stylogiannis, Hausdorff operators on Bergmann spaces of the upper half plane, Concr. Oper. 7 (2000), 69–80.
5. K. F. Andersen, Boundedness of Hausdorff operators on Lp(Rn), H1(Rn), and BMO(Rn), Acta. Sci. Math. (Szeged) 69 (2003), 409–418.