Integrating Protein-Protein Interaction Networks with Gene- Gene Co-Expression Networks improves Gene Signatures for Classifying Breast Cancer Metastasis

Author:

Akker Erik van den12,Verbruggen Bas2,Heijmans Bas13,Beekman Marian13,Kok Joost145,Slagboom Eline13,Reinders Marcel65

Affiliation:

1. 1Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands Netherlands

2. 2The Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands

3. 3Netherlands Consortium of Healthy Ageing, Netherlands

4. 4Algorithms, Leiden Institute of Advanced Computer Science, University Leiden, Leiden, The Netherlands Netherlands

5. 5Netherlands Bioinformatics Centre, Netherlands

6. 6The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands Netherlands

Abstract

Summary Multiple studies have illustrated that gene expression profiling of primary breast cancers throughout the final stages of tumor development can provide valuable markers for risk prediction of metastasis and disease sub typing. However, the identification of a biologically interpretable and universally shared set of markers proved to be difficult. Here, we propose a method for de novo grouping of genes by dissecting the proteinprotein interaction network into disjoint sub networks using pair wise gene expression correlation measures. We show that the obtained sub networks are functionally coherent and are consistently identified when applied on a compendium composed of six different breast cancer studies. Application of the proposed method using different integration approaches underlines the robustness of the identified sub network related to cell cycle and identifies putative new sub network markers for metastasis related to cell-cell adhesion, the proteasome complex and JUN-FOS signalling. Although gene selection with the proposed method does not directly improve upon previously reported cross study classification performances, it shows great promises for applications in data integration and result interpretation.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3