Affiliation:
1. Department of Mathematics , Weizmann Institute of Science , Rehovot Israel
Abstract
Abstract
We propose a model for a growth competition between two subsets of a Riemannian manifold. The sets grow at two different rates, avoiding each other. It is shown that if the competition takes place on a surface which is rotationally symmetric about the starting point of the slower set, then if the surface is conformally equivalent to the Euclidean plane, the slower set remains in a bounded region, while if the surface is nonpositively curved and conformally equivalent to the hyperbolic plane, both sets may keep growing indefinitely.
Subject
Applied Mathematics,Geometry and Topology,Analysis