Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations

Author:

Karimi Alireza,Haghighatnama Maedeh,Navidbakhsh Mahdi,Haghi Afsaneh Motevalli

Abstract

AbstractSkin tissue is not only responsible for thermoregulation but also for protecting the human body from mechanical, bacterial, and viral insults. The mechanical properties of skin tissue may vary according to the anatomical locations in the body. However, the linear elastic and nonlinear hyperelastic mechanical properties of the skin in different anatomical regions and at different loading directions (axial and circumferential) so far have not been determined. In this study, the mechanical properties during tension of the rat abdomen and back were calculated at different loading directions using linear elastic and nonlinear hyperelastic material models. The skin samples were subjected to a series of tensile tests. The elastic modulus and maximum stress of the skin tissues were measured before the incidence of failure. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a constitutive equation. Hyperelastic strain energy density function was calibrated using the experimental data. The results revealed the anisotropic mechanical behavior of the abdomen and the isotropic mechanical response of the back skin. The highest elastic modulus was observed in the abdomen skin under the axial direction (10 MPa), while the lowest one was seen in the back skin under axial loading (5 MPa). The Mooney-Rivlin material model closely addressed the nonlinear mechanical behavior of the skin at different loading directions, which can be implemented in the future biomechanical models of skin tissue. The results might have implications not only for understanding of the isotropic and anisotropic mechanical behavior of skin tissue at different anatomical locations but also for providing more information for a diversity of disciplines, including dermatology, cosmetics industry, clinical decision making, and clinical intervention.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference118 articles.

1. skin skull brain model for the biomechanical reconstruction of blunt forces to the human head;Thali;Forensic Sci Int,2002

2. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography;Liang;IEEE Trans Biomed Eng,2010

3. The viscoelastic hyperelastic and scale dependent behaviour of freshly excised individual skin layers;Crichton;Biomaterials,2011

4. Mechanical characterisation of in vivo human skin using a force - sensitive micro - robot and finite element analysis Model;Flynn,2011

5. The viscoelastic hyperelastic and scale dependent behaviour of freshly excised individual skin layers;Crichton;Biomaterials,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3