Estimating the size of undetected cases of the COVID-19 outbreak in Europe: an upper bound estimator

Author:

Rocchetti Irene1,Böhning Dankmar2ORCID,Holling Heinz3ORCID,Maruotti Antonello45ORCID

Affiliation:

1. Statistical Office - Consiglio Superiore della Magistratura , Rome , Italy

2. Southampton Statistical Sciences Research Institute, University of Southampton , Southampton , UK

3. Department of Methods and Statistics , Faculty of Psychology and Sports, University of Münster , Münster , Germany

4. Dipartimento di Giurisprudenza, Economia , Politica e Lingue Moderne Libera Università Ss Maria Assunta , Rome , Italy

5. Department of Mathematics , University of Bergen , Bergen , Norway

Abstract

AbstractBackgroundWhile the number of detected COVID-19 infections are widely available, an understanding of the extent of undetected cases is urgently needed for an effective tackling of the pandemic. The aim of this work is to estimate the true number of COVID-19 (detected and undetected) infections in several European countries. The question being asked is: How many cases have actually occurred?MethodsWe propose an upper bound estimator under cumulative data distributions, in an open population, based on a day-wise estimator that allows for heterogeneity. The estimator is data-driven and can be easily computed from the distributions of daily cases and deaths. Uncertainty surrounding the estimates is obtained using bootstrap methods.ResultsWe focus on the ratio of the total estimated cases to the observed cases at April 17th. Differences arise at the country level, and we get estimates ranging from the 3.93 times of Norway to the 7.94 times of France. Accurate estimates are obtained, as bootstrap-based intervals are rather narrow.ConclusionsMany parametric or semi-parametric models have been developed to estimate the population size from aggregated counts leading to an approximation of the missed population and/or to the estimate of the threshold under which the number of missed people cannot fall (i.e. a lower bound). Here, we provide a methodological contribution introducing an upper bound estimator and provide reliable estimates on thedark number, i.e. how many undetected cases are going around for several European countries, where the epidemic spreads differently.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3