Affiliation:
1. Department of Geomatics Engineering, Faculty of Engineering and Architecture , Izmir Katip Celebi University , Izmir , Turkey
Abstract
Abstract
Nowadays, solving hard optimization problems using metaheuristic algorithms has attracted bountiful attention. Generally, these algorithms are inspired by natural metaphors. A novel metaheuristic algorithm, namely Grey Wolf Optimization (GWO), might be applied in the solution of geodetic optimization problems. The GWO algorithm is based on the intelligent behaviors of grey wolves and a population based stochastic optimization method. One great advantage of GWO is that there are fewer control parameters to adjust. The algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. In the present paper, the GWO algorithm is applied in the calibration of an Electronic Distance Measurement (EDM) instrument using the Least Squares (LS) principle for the first time. Furthermore, a robust parameter estimator called the Least Trimmed Absolute Value (LTAV) is applied to a leveling network for the first time. The GWO algorithm is used as a computing tool in the implementation of robust estimation. The results obtained by GWO are compared with the results of the ordinary LS method. The results reveal that the use of GWO may provide efficient results compared to the classical approach.
Subject
Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献