Performance of a solution of the direct geodetic problem by Taylor series of Cartesian coordinates

Author:

Marx C.1

Affiliation:

1. Gropiusstraße 6, 13357 Berlin , Germany

Abstract

Abstract The direct geodetic problem is regarded on the biaxial and triaxial ellipsoid. A known solution method suitable for low eccentricities, which uses differential equations in Cartesian coordinates and Taylor series expansions of these coordinates, is advanced in view of its practical application. According to previous works, this approach has the advantages that no singularities occur in the determination of the coordinates, its mathematical formulation is simple and it is not computationally intensive. The formulas of the solution method are simplified in the present contribution. A test of this method using an extensive test data set on a biaxial earth ellipsoid shows its accuracy and practicability for distances of any length. Based on the convergence behavior of the series of the test data set, a truncation criterion for the series expansions is compiled taking into account accuracy requirements of the coordinates. Furthermore, a procedure is shown which controls the truncation of the series expansions by accuracy requirements of the direction to be determined in the direct problem. The conducted tests demonstrate the correct functioning of the methods for the series truncation. However, the considered solution method turns out to be significantly slower than another current method for biaxial ellipsoids, which makes it more relevant for triaxial ellipsoids.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using the Theory of Functional Connections to Solve Boundary Value Geodesic Problems;Mathematical and Computational Applications;2022-07-27

2. GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY;GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY;2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3