Developing low-cost automated tool for integrating maps with GNSS satellite positioning data

Author:

Habib Maan1ORCID,Farghal Ali2,Taani Aymen3

Affiliation:

1. Topographic Engineering Department, Faculty of Civil Engineering, Damascus University , Damascus , Syria

2. Geography Department, Faculty of Educational Sciences and Arts/UNRWA , Amman , Jordan

3. Department of Applied Geography, Faculty of Arts and Humanities, Al Albayt University , Mafraq , Jordan

Abstract

Abstract Representing the Earth’s physical features onto a flat surface is a critical and challenging issue for geodesists to build topographic mappings at field scale in various applications. Artificial satellite positioning data are currently defined on a global geocentric frame, while terrestrial geodetic networks are determined on a local ellipsoid. Hence, coordinate transformations in three-dimensional space are required for data fusion involving different coordinate systems utilizing common points in two sets of coordinates. On the other hand, small companies in many developing countries have some data conversion difficulties due to the need for high-cost software and qualified persons. A low-cost automated tool is helpful in achieving this task and ensuring quality and positional accuracy. In this investigation, the problem was undertaken by establishing a software tool in the Microsoft Visual Studio environment for map-matching with global coordinates based on similarity transformations and a conformal polynomial approach. The tool’s performance was evaluated through a numerical example to assign transformation parameters and derive coordinates of checkpoints from the prediction surface.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3