Global Geopotential Models assessment in Ecuador based on geoid heights and geopotential values

Author:

Carrión José1,Flores Fredy1,Rodríguez Freddy1,Pozo Miguel1

Affiliation:

1. Department of Geodesy – Geographic Military Institute of Ecuador , Quito , Ecuador

Abstract

Abstract Since the 1960s, the analysis of disturbed satellite orbits to infer Earth’s gravity field functionals has been an important element in determining the Earth’s gravitational field. The long wavelengths of the gravitational field are recovered through the analysis of non-Keplerian variations in the orbital path of artificial satellites, from their tracking from ground stations (Satellite Laser Ranging, Doppler Orbitography and Radiopositioning Integrated by Satellite, and Precise Range And Range-Rate Equipment), from satellite-to-satellite tracking, or by microwave interferometry. In addition, differences in gravitational acceleration in three mutually orthogonal dimensions can be determined by employing a differential accelerometer carried on artificial satellites (satellite gravity gradiometry, SGG). Satellite gravimetry provides global information (long wavelengths) of the Earth’s gravitational field, which is the fundamental basis for the implementation of Global Geopotential Models (GGMs). The GGMs are one of the key tools for the representation of the Earth’s gravity field and, therefore, for the establishment of a Global Height System (i.e., International Height Reference System), whose fundamental reference surface is defined in terms of a geopotential value. In this study, the validation of high-resolution GGMs (coefficients up to degree 2190) was performed based on their performance in Ecuador by comparing geoid heights estimated by the GGMs with the corresponding values derived from Global Navigation Satellite System/leveling records. Furthermore, geopotential values from the GGMs are compared with the corresponding value obtained for the Ecuadorian Vertical Datum by solving the fixed geodetic boundary value problem. The obtained results indicated that the precision of the high-resolution GGMs does not reach the established requirements for the geopotential computation in the International Height Reference Frame fundamental stations.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3