Affiliation:
1. Max-Planck-Institut für Chemie (Otto Hahn Institut), Mainz
Abstract
Abstract
The differences in the liquid phase internal vibrational frequencies of water, obtained from molecular dynamics (MD) simulations, between the two versions of the central force model of Rahman and Stillinger (CF1 and CF2) are investigated by employing the theory of Buckingham on solvent effects. It is found that the differences can be essentially accounted for by the different O-H stretching cubic anharmonic force constants of CF1 and CF2. A significantly improved agreement between the results of MD simulations and spectroscopically observed liuqid phase frequencies could be achieved by using a harmonic force field, supplemented by a cubic stretching force constant, for the intramolecular interactions of water, and the CF2 potential for the intermolecular interactions.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献