Hybrid Optical Amplifier for Flat Gain in Super Dense Wavelength Division Multiplexed (SDWDM) System

Author:

Wason Amit1,Malik Deepak2

Affiliation:

1. Ambala College of Engineering and Applied Research , Devsthali , India

2. ECE Department , MMEC, MM (DU) , Mullana , Ambala , India

Abstract

Abstract Large capacity optical networks require flattened gain spectrum and large gain bandwidth of the optical networks. In order to achieve this large number of hybrid optical amplifiers are designed. Here we proposed a competent flat gain hybrid optical amplifier with an optimum combination of Erbium Doped Fiber Amplifier (EDFA) and Raman amplifier. Attempts are made to design a hybrid optical amplifier for 100 channels, 10 Gbps Super Dense Wavelength Division Multiplexed (SDWDM) systems at different channel spacing of 0.1, 0.2, 0.4 and 0.8 nm. Work capacity of the network was compared on the basis of various parameters viz., gain and noise figure that determined the performance of the system. The gain spectrum of the hybrid optical amplifier depends upon the parameters viz., pump wavelength, pump power and laser input power of the amplifier. Various efforts were conceded out to optimize these parameters. It was found that for wavelength range 1,570.5–1,580.75 nm, a flat gain of 5.36 dB is achieved for input power of −15 dB with noise figure variation of 0.57 dB without using any gain flattering scheme. Being simple and cost effective, this hybrid optical amplifier could be recommended for gain flatness characteristics and acceptable noise figure for super dense wavelength division multiplexed system.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3