Analyzing the existence of solution of a fractional order integral equation: A fixed point approach

Author:

Saha Dipankar1,Sen Mausumi1,Roy Santanu1

Affiliation:

1. National Institute of Technology Silchar , Silchar , India

Abstract

Abstract This paper signifies the beauty of fixed point theory in the context of attaining the sufficient condition for the existence of the solution of a non-linear functional-integral equation in an unbounded interval. Here a non-linear integral equation (NLIE) involving a fractional operator is taken in the form of an operator equation. Utilizing the perception of measure of noncompactness (MNC) along with certain relevant assumptions, it is proved that the operator equation satisfies the Darbo condition for the product of operators in a Banach algebra. Finally, the result obtained is verified by the assistance of the numerical example.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Mathematical Physics

Reference23 articles.

1. A. Aghajani and M. Aliaskari, Measure of noncompactness in banach algebra and application to the solvability of integral equations in BC( R + {R}_{+} , Inf. Sci. Lett. 192 (2015), 93–99.

2. I. K. Argyros, Quadratic equations and applications to Chandrasekhar’s and related equations, Bull. Aust. Math. Soc. 32 (1985), no. 2, 275–292.

3. J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes Pure Appl. Math. 60, Marcel Dekker, New York, 1980.

4. T. A. Burton and B. Zhang, Fixed points and stability of an integral equation: nonuniqueness, Appl. Math. Lett. 17 (2004), no. 7, 839–846.

5. J. Caballero, A. B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differential Equations 2006 (2006), Paper No. 57.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3