On intersection volumes of confidence hyper-ellipsoids and two geometric Monte Carlo methods

Author:

Rabiei Nima1,Saleeby Elias G.2

Affiliation:

1. International University of Sarajevo, Engineering and Natural Sciences , Sarajevo , Bosnia and Herzegovina

2. Mount Lebanon , Lebanon

Abstract

Abstract The intersection or the overlap region of two n-dimensional ellipsoids plays an important role in statistical decision making in a number of applications. For instance, the intersection volume of two n-dimensional ellipsoids has been employed to define dissimilarity measures in time series clustering (see [M. Bakoben, T. Bellotti and N. M. Adams, Improving clustering performance by incorporating uncertainty, Pattern Recognit. Lett. 77 2016, 28–34]). Formulas for the intersection volumes of two n-dimensional ellipsoids are not known. In this article, we first derive exact formulas to determine the intersection volume of two hyper-ellipsoids satisfying a certain condition. Then we adapt and extend two geometric type Monte Carlo methods that in principle allow us to compute the intersection volume of any two generalized convex hyper-ellipsoids. Using the exact formulas, we evaluate the performance of the two Monte Carlo methods. Our numerical experiments show that sufficiently accurate estimates can be obtained for a reasonably wide range of n, and that the sample-mean method is more efficient. Finally, we develop an elementary fast Monte Carlo method to determine, with high probability, if two n-ellipsoids are separated or overlap.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Reference18 articles.

1. S. Ahmed and E. G. Saleeby, On volumes of hyper-ellipsoids, Math. Mag. 91 (2018), no. 1, 43–50.

2. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, New York, 1958.

3. M. Bakoben, T. Bellotti and N. M. Adams, Improving clustering performance by incorporating uncertainty, Pattern Recognit. Lett. 77 (2016), 28–34.

4. K. El Khaldi and E. G. Saleeby, On the tangent model for the density of lines and a Monte Carlo method for computing hypersurface area, Monte Carlo Methods Appl. 23 (2017), no. 1, 13–20.

5. K. El Khaldi and E. G. Saleeby, On the density of lines and Santalo’s formula for computing geometric size measures, Monte Carlo Methods Appl. 26 (2020), no. 4, 315–323.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3