Affiliation:
1. Laboratoire de Probabilités, Statistiques et Modélisation , Sorbonne Université , Paris , France
Abstract
Abstract
We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for
V
:
R
d
→
R
V\colon\mathbb{R}^{d}\to\mathbb{R}
a potential function to minimize, we consider the stochastic differential equation
d
Y
t
=
−
σ
σ
⊤
∇
V
(
Y
t
)
d
t
+
a
(
t
)
σ
(
Y
t
)
d
W
t
+
a
(
t
)
2
Υ
(
Y
t
)
d
t
dY_{t}=-\sigma\sigma^{\top}\nabla V(Y_{t})\,dt+a(t)\sigma(Y_{t})\,dW_{t}+a(t)^{2}\Upsilon(Y_{t})\,dt
, where
(
W
t
)
(W_{t})
is a Brownian motion,
σ
:
R
d
→
M
d
(
R
)
\sigma\colon\mathbb{R}^{d}\to\mathcal{M}_{d}(\mathbb{R})
is an adaptive (multiplicative) noise,
a
:
R
+
→
R
+
a\colon\mathbb{R}^{+}\to\mathbb{R}^{+}
is a function decreasing to 0 and where Υ is a correction term.
Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation
d
Y
t
=
−
∇
V
(
Y
t
)
d
t
+
σ
d
W
t
dY_{t}=-\nabla V(Y_{t})\,dt+\sigma\,dW_{t}
.
In a previous paper, we established the convergence in
L
1
L^{1}
-Wasserstein distance of
Y
t
Y_{t}
and of its associated Euler scheme
Y
¯
t
\bar{Y}_{t}
to
argmin
(
V
)
\operatorname{argmin}(V)
with the classical schedule
a
(
t
)
=
A
log
−
1
/
2
(
t
)
a(t)=A\log^{-1/2}(t)
.
In the present paper, we prove the convergence in total variation distance.
The total variation case appears more demanding to deal with and requires regularization lemmas.
Subject
Applied Mathematics,Statistics and Probability
Reference22 articles.
1. P. Bras,
Convergence rates of Gibbs measures with degenerate minimum,
Bernoulli 28 (2022), no. 4, 2431–2458.
2. P. Bras and G. Pagès,
Convergence of Langevin-simulated annealing algorithms with multiplicative noise,
preprint (2021), https://arxiv.org/abs/2109.116690.
3. P. Bras, G. Pagès and F. Panloup,
Total variation distance between two diffusions in small time with unbounded drift: Application to the Euler–Maruyama scheme,
Electron. J. Probab. 27 (2022), Paper No. 153.
4. A. S. Dalalyan,
Theoretical guarantees for approximate sampling from smooth and log-concave densities,
J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 (2017), no. 3, 651–676.
5. Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli and Y. Bengio,
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization,
Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (NIPS’14),
MIT, Cambridge (2014), 2933–2941.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI meets physics: a comprehensive survey;Artificial Intelligence Review;2024-08-16