A random walk algorithm to estimate a lower bound of the star discrepancy

Author:

Alsolami Maryam1ORCID,Mascagni Michael2ORCID

Affiliation:

1. Department of Computer Science , Florida State University , Tallahassee , FL 32306-4530 , USA ; and College of Computers and Information Systems, Umm Al-Qura University, Mecca, Saudi Arabia

2. Department of Computer Science , Florida State University , Tallahassee , FL 32306-4530; and National Institute of Standards & Technology, ITL, Gaithersburg, MD 20899-8910 , USA

Abstract

Abstract In many Monte Carlo applications, one can substitute the use of pseudorandom numbers with quasirandom numbers and achieve improved convergence. This is because quasirandom numbers are more uniform that pseudorandom numbers. The most common measure of that uniformity is the star discrepancy. Moreover, the main error bound in quasi-Monte Carlo methods, called the Koksma–Hlawka inequality, has the star discrepancy in the formulation. A difficulty with this bound is that computing the star discrepancy is very costly. The star discrepancy can be computed by evaluating a function called the local discrepancy at a number of points. The supremum of these local discrepancy values is the star discrepancy. If we have a point set in [ 0 , 1 ] s {[0,1]^{s}} with N members, we need to compute the local discrepancy at N s {N^{s}} points. In fact, computing star discrepancy is NP-hard. In this paper, we will consider an approximate algorithm for a lower bound on the star discrepancy based on using a random walk through some of the N s {N^{s}} points. This approximation is much less expensive that computing the star discrepancy, but still accurate enough to provide information on convergence. Our numerical results show that the random walk algorithm has the same convergence rate as the Monte Carlo method, which is O ( N - 1 2 {O(N^{-\frac{1}{2}}} ).

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3