On bias reduction in parametric estimation in stage structured development models

Author:

Pham Hoa1,Pham Huong T. T.1,Yow Kai Siong2

Affiliation:

1. Mathematical Department , An Giang University , Long Xuyên ; and Vietnam National University, Ho Chi Minh City , Vietnam

2. Department of Mathematics and Statistics , Faculty of Science , Universiti Putra Malaysia , UPM Serdang , Malaysia

Abstract

Abstract Multi-stage models for cohort data are popular statistical models in several fields such as disease progressions, biological development of plants and animals, and laboratory studies of life cycle development. A Bayesian approach on adopting deterministic transformations in the Metropolis–Hastings (MH) algorithm was used to estimate parameters for these stage structured models. However, the biases in later stages are limitations of this methodology, especially the accuracy of estimates for the models having more than three stages. The main aim of this paper is to reduce these biases in parameter estimation. In particular, we conjoin insignificant previous stages or negligible later stages to estimate parameters of a desired stage, while an adjusted MH algorithm based on deterministic transformations is applied for the non-hazard rate models. This means that current stage parameters are estimated separately from the information of its later stages. This proposed method is validated in simulation studies and applied for a case study of the incubation period of COVID-19. The results show that the proposed methods could reduce the biases in later stages for estimates in stage structured models, and the results of the case study can be regarded as a valuable continuation of pandemic prevention.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3