Monte Carlo tracking drift-diffusion trajectories algorithm for solving narrow escape problems

Author:

Sabelfeld Karl K.1,Popov Nikita1

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Lavrentiev Str., 6, 630090Novosibirsk; and Novosibirsk State University, Pirogova str., 1, 630090 Novosibirsk, Russia

Abstract

AbstractThis study deals with a narrow escape problem, a well-know difficult problem of evaluating the probability for a diffusing particle to reach a small part of a boundary far away from the starting position of the particle. A direct simulation of the diffusion trajectories would take an enormous computer simulation time. Instead, we use a different approach which drastically improves the efficiency of the diffusion trajectory tracking algorithm by introducing an artificial drift velocity directed to the target position. The method can be efficiently applied to solve narrow escape problems for domains of long extension in one direction which is the case in many practical problems in biology and chemistry. The algorithm is meshless both in space and time, and is well applied to solve high-dimensional problems in complicated domains. We present in this paper a detailed numerical analysis of the method for the case of a rectangular parallelepiped. Both stationary and transient diffusion problems are handled.

Funder

Russian Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Reference24 articles.

1. Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows;J. Comput. Phys.,2018

2. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials;Nano-Micro Lett.,2019

3. Random walk on spheres method for solving drift-diffusion problems;Monte Carlo Methods Appl.,2016

4. Piezoelectric field, exciton lifetime, and cathodoluminescence intensity at threading dislocations in GaN0001;Appl. Phys. Lett.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3