Bootstrap choice of non-nested autoregressive model with non-normal innovations

Author:

Zamani Mehreyan Sedigheh1ORCID

Affiliation:

1. Department of Statistics , Imam Khomeini International University , Qazvin , Iran

Abstract

Abstract It is known that the block-based version of the bootstrap method can be used for distributional parameter estimation of dependent data. One of the advantages of this method is that it improves mean square errors. The paper makes two contributions. First, we consider the moving blocking bootstrap method for estimation of parameters of the autoregressive model. For each block, the parameters are estimated based on the modified maximum likelihood method. Second, we provide a method for model selection, Vuong’s test and tracking interval, i.e. for selecting the optimal model for the innovation’s distribution. Our analysis provides analytic results on the asymptotic distribution of the bootstrap estimators and also computational results via simulations. Some properties of the moving blocking bootstrap method are investigated through Monte Carlo simulation. This simulation study shows that, sometimes, Vuong’s test based on the modified maximum likelihood method is not able to distinguish between the two models; Vuong’s test based on the moving blocking bootstrap selects one of the competing models as optimal model. We have studied real data, the S&P500 data, and select optimal model for this data based on the theoretical results.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Reference21 articles.

1. B. L. Alvarez, G. Ferreira and E. Porcu, Modified maximum likelihood estimation in autoregressive processes with generalized exponential innovations, Open J. Stat. 4 (2014), no. 8, 620–629.

2. H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, Akadémiai Kiadó, Budapest (1973), 267–281.

3. P. Bondon, Estimation of autoregressive models with epsilon-skew-normal innovations, J. Multivariate Anal. 100 (2009), no. 8, 1761–1776.

4. G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1976.

5. G. Ciołek and P. Potorski, Bootstrapping periodically autoregressive models, ESAIM Probab. Stat. 21 (2017), 394–411.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3