Investigating the ecological fallacy through sampling distributions constructed from finite populations

Author:

Torres David J.1,Rouson Damain2

Affiliation:

1. Department of Mathematics and Physical Science , Northern New Mexico College , Española , NM 87532 , USA

2. Computer Languages and Systems Software Group , Lawrence Berkeley National Laboratory , Berkeley , California , USA

Abstract

Abstract Correlation coefficients and linear regression values computed from group averages can differ from correlation coefficients and linear regression values computed using individual scores. This observation known as the ecological fallacy often assumes that all the individual scores are available from a population. In many situations, one must use a sample from the larger population. In such cases, the computed correlation coefficient and linear regression values will depend on the sample that is chosen and the underlying sampling distribution. The sampling distribution of correlation coefficients and linear regression values for group averages will be identical to the sampling distribution for individuals for normally distributed variables for random samples drawn from infinitely large continuous distributions. However, data that is acquired in practice is often acquired when sampling without replacement from a finite population. Our objective is to demonstrate through Monte Carlo simulations that the sampling distributions for correlation and linear regression will also be similar for individuals and group averages when sampling without replacement from normally distributed variables. These simulations suggest that when a random sample from a population is selected, the correlation coefficients and linear regression values computed from individual scores will not be more accurate in estimating the entire population values compared to samples when group averages are used as long as the sample size is the same.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3