1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.tensorflow.org.
2. F. Albertini and E. D. Sontag,
Uniqueness of weights for recurrent nets,
Math. Res. 79 (1994), 599–599.
3. F. Albertini, E. D. Sontag and V. Maillot,
Uniqueness of weights for neural networks,
Artificial Neural Networks for Speech and Vision,
Chapman & Hall, London (1993), 113–125.
4. V. I. Arnold,
On functions of three variables,
Dokl. Akad. Nauk SSSR 114 (1957), 679–681.
5. V. Bally and G. Pagès,
A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems,
Bernoulli 9 (2003), no. 6, 1003–1049.