Neural network regression for Bermudan option pricing

Author:

Lapeyre Bernard1ORCID,Lelong Jérôme2

Affiliation:

1. CERMICS , École des Ponts ParisTech , INRIA, 6 et 8 avenue Blaise-Pascal, Champs-sur-Marne, 77455 Marne-la-Vallée , France

2. LJK , Université Grenoble Alpes , CNRS, Grenoble INP, LJK, 38000 Grenoble , France

Abstract

Abstract The pricing of Bermudan options amounts to solving a dynamic programming principle, in which the main difficulty, especially in high dimension, comes from the conditional expectation involved in the computation of the continuation value. These conditional expectations are classically computed by regression techniques on a finite-dimensional vector space. In this work, we study neural networks approximations of conditional expectations. We prove the convergence of the well-known Longstaff and Schwartz algorithm when the standard least-square regression is replaced by a neural network approximation, assuming an efficient algorithm to compute this approximation. We illustrate the numerical efficiency of neural networks as an alternative to standard regression methods for approximating conditional expectations on several numerical examples.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Statistics and Probability

Reference37 articles.

1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.tensorflow.org.

2. F. Albertini and E. D. Sontag, Uniqueness of weights for recurrent nets, Math. Res. 79 (1994), 599–599.

3. F. Albertini, E. D. Sontag and V. Maillot, Uniqueness of weights for neural networks, Artificial Neural Networks for Speech and Vision, Chapman & Hall, London (1993), 113–125.

4. V. I. Arnold, On functions of three variables, Dokl. Akad. Nauk SSSR 114 (1957), 679–681.

5. V. Bally and G. Pagès, A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems, Bernoulli 9 (2003), no. 6, 1003–1049.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep neural network expressivity for optimal stopping problems;Finance and Stochastics;2024-06-14

2. Deep Signature Algorithm for Multidimensional Path-Dependent Options;SIAM Journal on Financial Mathematics;2024-03-22

3. Learning Bermudans;Computational Economics;2024-02-01

4. Recent developments in machine learning methods for stochastic control and games;Numerical Algebra, Control and Optimization;2024

5. Convergence of the Backward Deep BSDE Method with Applications to Optimal Stopping Problems;SIAM Journal on Financial Mathematics;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3