Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterisation

Author:

Burgert Ingo,Gierlinger Notburga,Zimmermann Tanja

Abstract

Abstract Single fibres of spruce (Picea abies [L.] Karst.) were isolated both chemically and mechanically from a solid wood sample. Mechanical isolation was carried out using very fine tweezers to peel out fibres, thereby taking advantage of the low shear strength between them. Chemical isolation was achieved using hydrogen peroxide and glacial acetic acid. Fibres were examined with Fourier-transform infrared (FT-IR) microscopy, and field-emission environmental scanning electron microscopy (FE-ESEM) in low-Vacuum mode to compare the isolation techniques with respect to their influence on cell wall structure and polymer assembly. The chemical treatment led to degradation of lignin and hemicelluloses, significantly influencing the cell wall assembly and structure. The cell wall polymers of mechanically isolated fibres remained in their natural constitution. As expected, the peeling process caused separation of cell wall layers. Our examinations indicate that delamination predominately took place at the interface between the secondary cell wall and the compound middle lamella. However, fracture between the S1 and S2 layers was examined as well. With respect to fibre quality, it was of particular importance that transverse crack propagation in the secondary cell walls (S2) was not observed.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3