Abstract
Abstract
Measurements are reported of the mechanosorptive strain in Pinus radiata specimens stressed either in torsion or in bending. It is demonstrated that, to secure valid data, correction must be made for the moisture-induced distortion at zero load. A series of measurements can be made on a single specimen if two successive mechano-sorptive loading cycles are used and the sense of the stress is reversed for the second cycle. At the end of this procedure the specimen has reverted to its original dimensions. The mechanosorptive strain is shown to vary linearly with the applied stress; the ratio of the mechanosorptive strain to the initial elastic strain is therefore an appropriate way of quantifying the mechanosorptive effect. Analysis of torsion and bending data reveals that there is a strong correlation between the magnitude of the mechanosorptive strain and the shear stress component of the applied stress along the cellulose microfibril direction. It is suggested that the mechanosorptive effect arises from the effect of stress on the distribution of hydrogen bonds in hemicelluloses. A detailed model must await more information about the molecular structure of hemicelluloses in the cell walls.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献