Ultrastructural changes in a holocellulose pulp revealed by enzymes, thermoporosimetry and atomic force microscopy

Author:

Fahlén Jesper,Salmén Lennart

Abstract

Abstract To increase our knowledge of the ultrastructure within softwood fibres, enzymatic treatment, thermoporosimetry, light microscopy, and atomic force microscopy with image analysis were used to investigate the structure of holocellulose softwood pulp fibres. The size of the average cellulose fibril aggregates and the width of pore and matrix lamellae were found to be uniform across the secondary cell-wall layer in the transverse direction of the wood fibre wall. In holocellulose, these dimensions were very similar to those in the native wood, whereas in kraft pulp the cellulose fibril aggregates were larger and the pore and matrix lamellae broader. These differences between holocellulose and kraft pulp fibres suggest that a high temperature is needed for cellulose fibril aggregation to occur. Neither refining nor drying of the holocellulose pulp changed the cellulose fibril aggregate size. Upon drying and enzymatic treatment, a small decrease in the pore and matrix lamella width was evident throughout the fibre wall. This indicated not only uniform distribution of pores throughout the fibre wall, but also enzymatic accessibility to the entire fibre wall. The holocellulose pulp had a somewhat larger pore volume than the kraft pulp. Refining of the holocellulose pulp led to pore closure, probably due to increased mobility of the fibre wall. The enzymatic treatment revealed that during hydrolysis of one hemicellulose, part of the other was also dissolved, indicating that the two hemicelluloses are to some extent linked to each other in the structure.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3