Influence of metal magnesium addition on detonation initiation in shock wave focusing Pulse Detonation Engine

Author:

Wu Yun-Kai1,Zhang Yun-Tian1,Du Peng1,Cao Xi-Wei2,Xue Rui1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures , 12480 Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace, Xi’an Jiaotong University , Xi’an 710049 , Shaanxi , P.R. China

2. Beijing Institute of Astronautical Systems Engineering , Beijing 100076 , China

Abstract

Abstract The process of shock wave focusing can make the strength of shock waves be continuously accumulated and turned into detonation wave in Pulse Detonation Engine (PDE). However, its effective application needs the inlet jets be in high temperature and velocity, which is difficult to be satisfied under certain conditions. Therefore, in this paper, metal magnesium assisted detonation initiation is proposed and the effect of magnesium particle addition on the shock wave focusing process in a kerosene-fueled PDE with cavity configuration is investigated through numerical simulation. The result showed that when the temperature of the premixed fuel/air jets injected in opposite direction was set as 650 K, the collision of leading shock waves on the central axis was the main source of energy deposition and the shock wave focusing could make the detonation be initiated in the cavity. When the temperature of jets is reduced to 550 K, fuel ignition and detonation could not be achieved through shock wave focusing. Then adding metal magnesium particles into the combustor made the energy deposition be enhanced and the detonation be induced. The diffusion of metal particles can significantly change the structure, motion, merging and dissipation of vortices in the flow field. Generally, the shock wave focusing process is basically not affected with metal particles injection. Therefore, this method can be successfully employed for detonation initiation in the cavity when the fuel/air premixed jet temperature is not high for PDE.

Funder

The National Science Basic Research Program of Shaanxi

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3