Impact of cavity and ramp configuration on the combustion performance of a strut-based scramjet combustor

Author:

Jeyakumar Suppandi Pillai1,Patale Akash Shrikant2,Sharma Prince2

Affiliation:

1. Mechanical Engineering , Kalasalingam Academy of Research and Education , Krishnankoil , 626126 , India

2. Aeronautical Engineering , Kalasalingam Academy of Research and Education , Krishnankoil , 626126 , India

Abstract

Abstract The flow performance of a dual wall-mounted cavity in a strut-injector scramjet combustor in steady reacting flow conditions is computationally analyzed. A baseline configuration corresponding to DLR experiments and two proposed configurations with varying bottom wall cavity depth and fixed top wall ramp is considered. Steady-flow computations are performed using the 2-D Reynolds Averaged Navier–Stokes method with k-ω SST turbulence closure coupled and single-step reaction chemistry. The calculated flow patterns, density, pressure, and temperature fields are compared with shadowgraph and wall pressure measurements from DLR experiments. The cavity and strut are mounted downstream of the strut to analyze the shock patterns and their interference with the shear layer mixing features. The estimated flow patterns, density, pressure, and temperature fields are compared with shadowgraph and wall pressure measurements from DLR experiments. Incorporating cavity and ramp configuration provides earlier complete combustion compared to the baseline model, with a marginal rise in the total pressure caused by additional shock wave formation that emanates from the corners of the cavity and ramp. The combustion zone widens in the lateral direction as the cavity shifts the shock train downstream of the strut injector owing to intense shock shear layer interactions.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3