An efficient flow control technique based on co-flow jet and multi-stage slot circulation control applied to a supercritical airfoil

Author:

Wang Lei1,Lu Hanan1,Xu Yue2,Li Qiushi13

Affiliation:

1. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University , Beijing , China

2. Chinese Aeronautical Establishment , Beijing , China

3. Key Laboratory of Fluid and Power Machinery, Xihua University , Chengdu , China

Abstract

Abstract Circulation control is a kind of efficient flow control technology which can improve aircraft aerodynamic performance and reduce fuel consumption. However, improving the aerodynamic efficiency of a circulation device to enhance flight endurance and achieve environmentally flying is a challenging problem for the application of circulation control. This paper presents an efficient flow control technique that combines co-flow jet and multi-stage slot circulation control. The combinational flow control technique is applied to a supersonic airfoil to test its energy consumption and aerodynamic benefit achievement. Results show that both the single and double slot circulation control can improve the maximum lift-drag ratio of the baseline airfoil, with an increment of 11.3% and 19.1%, respectively. Compared with the single application of co-flow jet control which can increase the lift-drag ratio of the baseline airfoil by 16.3% and extend the stall angle of attack from 6° to 8°, the combinational flow control can obtain a more significant lift-drag ratio increment by about 27.3% and eliminate flow separations at high angle of attack. The stall angle of attack can even be increased to about 10°. Additionally, the blowing efficiency of the circulation control airfoil has been comprehensively analyzed. The results show that the maximum effective lift-drag ratio and highest blowing efficiency can be achieved at a blowing coefficient of 0.00235.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3