Design and combustion characteristics analysis of a static shaft turbofan engine

Author:

Ma Rong1,Jin Herong2,Yi Yali2,Yang Jingsheng3,Fan Xueling1

Affiliation:

1. Xi’an Key Laboratory of Extreme Environmental and Protection Technology, School of Aerospace Engineering , Xi’an Jiaotong University , Xi’an , 710049 , China

2. School of Mechanical Engineering , Yanshan University , Qinhuangdao , 066004 , China

3. Bureau of the Retired Personnel , Ministry of Industry and Information Technology , Beijing , 100804 , China

Abstract

Abstract A design scheme of a static shaft turbofan engine is proposed to meet the requirements of light weight and large thrust weight ratio of small aeroengine. As the core component of stable combustion, the thermal protection problem of the mid-mounted combustion chamber is particularly prominent. This paper designs a mid-mounted combustion chamber configuration that combines gas film cooling and central combustion. The influence of structural parameters on combustion characteristics is explored by numerical simulation, and the theoretical design and numerical simulation is verified based on combustion test results. The results show that the flame shape of the mid-mounted combustion chamber conforms to the characteristics of central combustion. The combustion effect of the nozzle with spray angle of 45° and flow rate of 1.87 kg/h meets the requirements of secondary combustion of the static shaft turbofan engine, and the air inlet of the combustion liner effectively increases the thickness of the cooling gas film. The experimental results are in good agreement with the numerical simulation results, and the temperature of the combustion liner wall can be reduced effectively. The above research provides a theoretical basis for the combustion chamber design of small static shaft turbofan engines and a reference for the thermal protection methods of small aeroengine combustion chambers.

Funder

National Science and Technology Major Project

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3