The role of volume effect on the transient behavior of a transonic compressor

Author:

Yuchen Dai12,Manxiang Song12,Donghai Jin12,Xingmin Gui12,Xiaoheng Liu12

Affiliation:

1. School of Energy and Power Engineering , Beihang University , Beijing , China

2. Jiangxi Research Institute, Beihang University , Beijing , China

Abstract

Abstract The significance of the volume effect on the compressor performance during acceleration and deceleration has received limited attention, despite its demonstrated importance in compressor flow instabilities. To better understand this effect, the in-house simulation program CAM (a modular transient simulator) is used to investigate the volume effect on the compressor transient performance. The modeling procedure is derived from Greziter’s lumped parameter approach and the accuracy of the simulation model is verified by experimental data. This study presents a comprehensive comparison and explanation of variations in compressor transient behavior observed under different conditions, including different shaft speed change rates, compressor volume sizes, and operating speeds. The relative difference between the compressor inlet and outlet mass flow is identified as the key factor contributing to these discrepancies. In addition, a simplified analytical model is developed to provide a basic description of the compressor operating line during acceleration and deceleration, which also provides additional support for the validity of the numerical results. This study systematically establishes the dynamic dependencies between shaft speed change, pressure and mass flow change, offering critical information for ensuring the safety of compressors during transient operation.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3