Research on a high-precision real-time improvement method for aero-engine component-level model

Author:

Zheng Qiangang1,Li Liangliang1,Zhang Haibo1,Chen Jiajie1

Affiliation:

1. JiangSu Province Key Laboratory of Aerospace Power System , Nanjing University of Aeronautics and Astronautics , NO. 29 Yudao Street , Nanjing 210016 , China

Abstract

Abstract In order to improve the real-time performance of the aero-engine Component-Level Model (CLM) while ensuring accuracy, a method for the Calculation of Thermodynamic Parameters of Working Fluids (CTPWF) based on a Neural Network and Newton Raphson (NN-NR) is proposed. In this method, the enthalpy or entropy under different fuel-air ratio and humidity conditions is mapped to temperature by a neural network, and the mapping output is used as the initial solution of Newton Raphson (NR) iteration. Then, a high-precision solution can be obtained through a few iterations, which avoids the shortcoming that the traditional method uses a fixed initial solution that leads to too many iterative steps. This effectively reduces the number of iterative steps and improves the calculation efficiency. This method is applied to the aero-thermodynamic calculation of each component of an engine CLM, which improves the accuracy and real-time performance of the CLM. The simulation results show that, compared to the traditional method, the proposed method improves the accuracy of the CTPWF and can reduces the single aero-thermodynamic calculation time by 25 % when humidity is not considered and by 47 % when humidity is considered. This effectively improves the real-time performance of the CLM.

Funder

National Science and Technology Major Project of China

Innovation Centre for Advanced Aviation Power , China

The Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics), China

Project funded by China Postdoctoral Science Foundation, China

Jiangsu Funding Program for Excellent Postdoctoral Talent, China

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3