Reduction of free fatty acids in waste oil for biodiesel production by glycerolysis: investigation and optimization of process parameters

Author:

Mićić Radoslav,Tomić Milan,Martinović FerencORCID,Kiss Ferenc,Simikić Mirko,Aleksic Aleksandra

Abstract

Abstract Influence of the process parameters for the industrially relevant reaction of free fatty acid (FFA) with glycerol is investigated. Furthermore, several drying techniques are investigated and a novel method is suggested that can provide more realistic experimental conditions. Silica as an absorbent is found to be a more suitable method for water removal than distillation or carrier gas. Using response surface methodology, important parameters are identified and optimal conditions found. Empirical correlation is developed to account for the most important parameters. Both oil:glycerol ratio and temperature have optimal values for which the highest conversion can be achieved. Interestingly, the highest conversion can be obtained at 220°C; above this temperature the conversion decreases. It is found that the influence of oil:glycerol ratio also exhibits anomalous behavior, where conversion is constant and decreases above a certain value. At optimal conditions, the FFA is reduced to 1.6% from the initial 8.6%.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3