Author:
Devi Henam Sylvia,Boda Muzaffar Ahmad,Shah Mohammad Ashraf,Parveen Shazia,Wani Abdul Hamid
Abstract
Abstract
In this report, aqueous phase green synthesis of iron oxide nanoparticle utilizing Platanus orientalis is elucidated for the first time. The phytoconstituents of the P. orientalis leaf extract serve a dual role as reducing and capping agent during the fabrication of iron oxide nanoparticles. The role of the leaf extract in the synthesis of iron oxide has been briefly demonstrated in this work. The tailored iron oxide particles were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, infrared spectroscopy, ultraviolet-visible spectroscopy, and dynamic light scattering technique. Nonetheless, X-ray diffraction pattern reveals the mixed phase nature of the ensuing iron oxide, i.e. α-Fe2O3 and γ-Fe2O3. The spherical oxide particles have an average diameter of 38 nm as determined from transmission electron microscopy. Infrared spectroscopy results confirmed the stabilization of iron oxide nanoparticles by the phytochemicals present in the leaf extract. Iron oxide nanoparticles show significant antifungal activity against Aspergillus niger and Mucor piriformis, employed as model fungi, but found to be more active toward M. piriformis.
Subject
Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry
Cited by
232 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献