Microwave-assisted and regular leaching of germanium from the germanium-rich lignite ash

Author:

Chen Yuqian,Zhou Junwen,Zhang Libo,Peng Jinhui,Li Shiwei,Yin Shaohua,Yang Kun,Lin Yaping

Abstract

Abstract Demand for germanium (Ge) is rapidly growing in recent years in various fields including semiconductors, aerospace, and solar cells. However, the Ge resources are very limited in the world. Hence, in this work, microwave-assisted leaching and conventional leaching methods are employed for the leaching of Ge from the Ge-rich lignite ash (GA). The effects of leaching temperature, leaching time, initial acid concentration, oxidizing agent amount, and stirring speed on leaching of Ge were investigated and microwave-assisted and conventional methods of leaching were compared. Here, HCl solution is used as a leaching agent, and MnO2 is used as an oxidizing agent. From the results, the leaching rate of Ge was found to be 89.49% in the microwave-assisted method, and 83.62% in the conventional leaching method. The optimal conditions for microwave-assisted method include a leaching temperature of 65°C, a leaching time of 90 min, an oxidizing agent amount of 10 g/l, an initial acid concentration of 10 mol/l, and a stirring speed of 250 rpm. The leaching rate of Ge significantly improved in the microwave-assisted method as compared to the conventional method. Therefore, the microwave-assisted method is a suitable method for the leaching of Ge from the GA and is a novel way for the efficient utilization of Ge concentrate.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3