Cytotoxic and apoptotic effectiveness of Cypriot honeybee (Apis mellifera cypria) venom on various cancer cells

Author:

Nalbantsoy Ayşe1ORCID,Varol Ekin2ORCID,Çaglar Ayşe Dila1ORCID,Yücel Banu2ORCID

Affiliation:

1. Faculty of Engineering, Bioengineering Department , Ege University , Bornova , Izmir , Türkiye

2. Faculty of Agriculture, Department of Animal Science , Ege University , Bornova , Izmir , Türkiye

Abstract

Abstract Objectives The bee stinger is the defense organ of honeybees. The venom sac of a worker bee is connected to its stinger, which is used as a defense mechanism, and it has a potent and complex combination of substances that is unique in the animal kingdom. Many immune-related illnesses have been successfully treated with bee venom and recent evidence on the efficacy of applications targeting malignancies has attracted considerable attention. Methods The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) test was used to determine the cytotoxicity of the crude venom, and the flow cytometric analysis was used to determine the apoptotic potential. The cytotoxic activity of Apis mellifera cypria venom collected from two different apiaries in Cyprus was evaluated for the first time against breast (MDA-MB-231), colon (Caco-2), cervix (HeLa), prostate (PC-3), pancreas (Panc-1), lung (A549), glioblastoma (U-87MG) human cancerous and healthy lung fibroblast (CCD-34Lu) cells. Results The venom concentration that killed 50 % of the cells (inhibitory concentration, IC50) is expressed as venom cytotoxicity. The IC50 values of A. m. cypria crude venom on cultured cells varied from 4.18±0.75 to 22.00±1.71 μg/mL after treatment with crude venom for 48 h, with the most potent activities against PC-3, Panc-1, and HeLa cells. Analysis of apoptotic cells by flow cytometry of both venom samples showed that bee venom slightly induced early apoptosis on A549 and Panc-1 cells. Conclusions The venom of the A. m. cypria is discussed in this article, displaying promising results as a potential source for an alternative treatment method because of its cytotoxic effect.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3