Variation and serial correlation of modulus of elasticity between and within European oak boards (Quercus robur and Q. petraea)

Author:

Tapia Cristóbal1,Aicher Simon1

Affiliation:

1. Materials Testing Institute, University of Stuttgart, Pfaffenwaldring 4b, 70569Stuttgart, Germany

Abstract

AbstractThis research aimed at describing the tensile modulus of elasticity (MOE), density and knot variability between and within oak (Quercus robur, Q. petraea) boards, which is essential for the stochastic modeling of wooden composites, such as glulam. Longitudinal deformations for 100-mm long cells were measured. The local density variation along boards revealed a very low mean coefficient of variation (COV) of 3%. The global MOE was precisely predicted from local (cell) MOEs, which span from 2.6 to 22 GPa. The mean COV of local MOE along board length was 12%, with extremes of 3% and 28%. The cell-related relationships of MOE with either density or knot area ratio showed low R-values of 0.4 and 0.3, respectively. A multivariate linear regression with both variables increased the MOE prediction to R = 0.6, which is below the literature results for beech and spruce wood. A serial correlation analysis of the local MOE was performed for board segments quasi-free of knots and for all cells, investigating different normalization approaches. Applying no MOE normalization delivered too high correlations due to pronounced inter-board MOE variations. A normalization based on an averaged maximum MOE per board delivered reasonable serial correlation results for the first four lags of the MOE knot-free variation (0.61; 0.38; 0.19 and 0.08). Considering also the knot-affected cells reduced the serial correlation roughly by a factor of 2.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference78 articles.

1. Machine-grading lumber in Britain;Forest Prod. J.,1964

2. Stand und Aussichten der maschinellen Schnittholzsortierung;Holz Roh- und Werkstoff,1980

3. A new approach to stress grading of lumber;Forest Prod. J.,1962

4. Study of the relationship between flatwise and edgewise moduli of elasticity of sawn timber as a means to improve mechanical strength grading technology;Holz Roh- Werkstoff,1997

5. A stochastic finite element model for glulam beams of hardwoods,2018b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3