Dynamic moisture sorption and dimensional stability of furfurylated wood with low lignin content

Author:

Yang Tiantian1,Ma Erni1,Cao Jinzhen1

Affiliation:

1. Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China

Abstract

AbstractDegradation of lignin occurs naturally in wood due to the influence of microorganisms or photic radiation. To improve the properties of wood with low lignin content, furfuryl alcohol (FA) at the concentration of 25% was used to modify poplar wood (Populus euramericana Cv.) after partial delignification. Moisture sorption and dimensional stability of the samples were investigated under dynamic conditions where the relative humidity (RH) was changed sinusoidally between 45% and 75% at 25°C. Both the moisture content (MC) and the tangential dimensional change varied with a sinusoidal shape similar to the RH. Hygroscopicity and hygroexpansion increased after delignification, while furfurylation led to an inverse impact by reducing MC, dimensional changes, amplitudes of MC and dimensional changes, moisture sorption coefficient (MSC), and humidity expansion coefficient (HEC). After delignification and further furfurylation, the MC and the dimensional changes were reduced by about 20%, and the maximum drop in amplitudes of MC and dimensional changes was about 30%, while the MSC and the HEC decreased by over 15%. In addition, the furfurylated wood with low lignin content exhibited lower sorption hysteresis and swelling hysteresis.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities of China

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference86 articles.

1. Further experiment of creep-rupture life under cyclic environmental conditions;Wood Fiber Sci.,1973

2. Tartaric acid catalyzed furfurylation of beech wood;Wood Sci. Technol.,2016

3. Lignin-based catalysts for Chinese fir furfurylation to improve dimensional stability and mechanical properties;Ind. Crops Prod.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3