Affiliation:
1. University of Gothenburg, Volrat Thamsgata 8, SE-412 60 Gothenburg, Sweden
2. Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, SE-413 19 Gothenburg, Sweden
Abstract
AbstractThe weakened microstructure of archaeological wood (AW) objects from waterlogged environments necessitates consolidation to avoid anisotropic shrinkage upon drying. Polymer impregnation through submergence or spraying treatments is commonly applied, and for larger and thicker objects, the impregnation period can stretch over decades. Thus, for efficient treatment, continuous monitoring of the impregnation status is required. Today, such monitoring is often destructive and expensive, requiring segments for extraction and chromatographic quantification. This study proposes an in situ Raman spectroscopic method for quantification of polyethylene glycol (PEG) in waterlogged AW. A calibration model was built on standards of PEG, cellulose powder, and milled wood lignin using orthogonal partial least squares (OPLS). The OPLS model had a strong linear relationship, and the PEG content in wood of varying degrees of degradation could be determined. However, the accuracy of the model was low with a root mean square error of prediction of 11 wt%. The low accuracy was traced to the heterogeneity in the calibration and validation set samples with regard to the small probing volume of the confocal instrumental setup.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献