A molecular model for reversible and irreversible hygroscopicity changes by thermal wood modification

Author:

Willems Wim1,Altgen Michael2,Rautkari Lauri2

Affiliation:

1. FirmoLin, Grote Bottel 7b, 5753 PE, Deurne, The Netherlands

2. Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076Aalto, Finland

Abstract

AbstractHeat treatment (HT) is a well-known means to reduce the equilibrium wood moisture content (EMC) at a specified relative humidity (RH). EMC is profoundly decreased by the loss of accessible hydroxyl groups (OHacc) in the wood matrix by thermochemical reactions. However, the obtained EMC reduction after HT can be partly reversible, depending on the ability of the wood matrix polymers to fully mechanically relax during HT. We discuss the results of our earlier experimental study on the OHacc content and the associated EMC decrease at 93% RH by a relaxation inhibiting dry-HT vs. a relaxation enabling wet-HT. New experimental results, showing that OHacc does not significantly change during reversible EMC changes, are added to the discussion. This study quantitatively supports a molecular explanation of the reversible EMC, in which wood moisture is principally bound at sorption sites, composed of two functional groups, constituting a hydrogen-donor/acceptor pair, involving at least one OHacc group. The irreversible part of EMC reduction is assigned to the thermochemical removal of OHacc from the wood matrix. The reversible part is attributed to a process of wood polymer conformal rearrangements, bringing an isolated OHacc group in proximity of another free hydrogen-bonding functional group, creating a site for water sorption.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3