Affiliation:
1. Research Institution of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
Abstract
AbstractMahogany wood (Swietenia macrophylla King) was thermally modified by heating at various temperatures. The wood-water-related parameters of the heat-treated wood, including fiber saturation point, equilibrium moisture content, moisture excluding efficiency, hygroscopic hysteresis, swelling, anti-swelling efficiency, water adsorption, and surface wettability were determined to clarify the mechanism of heat treatment to reduce wood hygroscopicity. The wood treated at a higher temperature demonstrated a more significant decrease in hygroscopicity. The reduction in hygroscopicity of the heat-treated wood was partially diminished as the moisture excluding efficiency decreased in the absorption and desorption processes caused by the changes in environmental temperature and relative humidity. The fiber saturation point (determined by nuclear magnetic resonance spectroscopy), surface free energy, and the surface wettability of wood were reduced by heat treatment, resulting in the decreased hygroscopicity of the heat-treated wood. Mahogany wood became more insensitive to the influence of moisture due to the heat treatment, and this effect was more distinct for wood treated at a high temperature.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献