Effect of heat treatment on bonding performance of poplar via an insight into dynamic wettability and surface strength transition from outer to inner layers

Author:

Chu Demiao123,Mu Jun1,Avramidis Stavros2,Rahimi Sohrab2,Lai Zongyuan1,Ayanleye Samuel2

Affiliation:

1. Key Laboratory of Wood Material Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing 100083, P.R. China

2. Department of Wood Science, University of British Columbia, Vancouver, BC, Canada

3. School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, P.R. China

Abstract

AbstractHeat treatment (HT) is thought to degrade wood surface wettability and cause gluing problems; this study focused on wettability and surface strength of the surface layer on heat-treated wood. The outer and inner surfaces formed by removing the 1-, 2- and 3-mm surface layers of heat-treated poplar on the tangential section were investigated. Dynamic wetting was analyzed according to the sessile drop method. The bonding failure models on different surfaces were also discussed based on both images of macro- and microscopic fracture interfaces. Using Fourier-transform near-infrared spectroscopy (FT-NIR), the cell wall chemistry on both outer and inner surfaces were analyzed. The results showed that the bonding strength of the outer surface was mainly affected by wettability, whereas the surface strength became the key factor for the inner layers. The removal of the first 1 mm of the surface layer enhanced the wetting process and transferred the failure mode from the glue line to the wood itself. FT-NIR revealed that the intensity of the thermal degradation on inner layers was alleviated with the removal depth; wettability and surface strength were enhanced compared with the outer surface. Surface abrasion and hardness declined, decreasing the surface strength and bonding capacity. This study indicates that the bonding of heat-treated wood is truly affected by the surface strength of the inner layers, in addition to the wettability on the outer surface.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3