Metal Binding by Humic Substances – Characterization by High-Resolution Lanthanoide Ion Probe Spectroscopy (HR-LIPS)

Author:

Marmodée Bettina1,Klerk Joost de2,Ariese Freek2,Gooijer Cees2,Kumke Michael U.1

Affiliation:

1. Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24 – 25, D-14476 Potsdam-Golm, Germany

2. Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands

Abstract

Abstract In ultra-low-temperature experiments at 4.7 K the luminescence of Eu(III) bound to different hydroxy- and methoxybenzoic acids and to humic substances (HS) was investigated. The benzoic acid derivatives were used as simple model compounds for common metal-binding structures in HS. The Eu(III) luminescence was directly excited by means of a pulsed dye laser, scanning through the 5D07F0 transition of Eu(III) and subsequently high-resolution total luminescence spectra (TLS) were recorded. Based on the thorough analysis of the high-resolution TLS conclusions were drawn with respect to the number of different complexes formed and to the symmetry of the complexes. The crystal-field strength parameter Nν (B2q) was dependent on the electrostatic forces induced by the ligands as well as on the symmetry of the complexes. The formation of thermodynamically stable complexes was found to be slow even for small model ligands such as 2-hydroxybenzoic acid. Comparison between the model compounds and HS clearly revealed that the carboxylate group is the dominant binding site in HS. Indices for the formation of chelates, e. g. similar to 2-hydroxybenzoic acid, were not found for HS

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3