Bending strength of ceramic compounds bonded with silicate-based glass solder

Author:

Sass Jan-Oliver1,Jakobi Abdessalam1,Mitrovic Aurica1,Ganz Cornelia1,Wilken Jennifer1,Burmeister Ulrike1,Lang Hermann1,Bader Rainer1,Vogel Danny1

Affiliation:

1. Rostock Germany

Abstract

Abstract In the field of dental technology, the length of ceramic pontics is limited to avoid mechanical failure. To reduce thermal-induced residual stress within the ceramic, using smaller subcomponents and subsequent bonding with silicate-based glass solder may be a favorable approach. Thus, the bending strength of zirconia compounds bonded with different silicate-based glass solders was investigated. For this purpose, rectangular specimens made of zirconia were bonded by glass solder. Parameters such as the scarf angle (45° and 90°), two different glass solders, as well as the soldering process (pressure and surface treatment) were varied. All specimens were subjected to quasi-static four-point bending tests according to DIN EN ISO 843-1. Additionally, the quality of the glass solder connection was evaluated using μCT and fractography. In the present study, zirconia compounds were sucessful bonded of zirconia compounds using silicate-based glass solder was. No significant differences in terms of bending strength were observed with respect to the different bonding parameters analyzed. The highest bending strength of 130.6 ± 50.5 MPa was achieved with a 90° scarf angle combined with ethanol treatment of the specimens before soldering and an additional application of a pressure of 2 bars in a dental pressure pot before subsequent soldering. Nevertheless, the bending strengths were highly decreased when compared to monolithic zirconia specimens (993.4 ± 125.5 MPa).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3