Abstract
AbstractThe casing groove is a highly effective method for improving the stall margin with the least detrimental effect on the peak efficiency in an axial compressor. In this work, a single casing groove with different heights and positions was numerically tested to evaluate effects of each geometric parameter on the stall margin in a transonic compressor. Validation between the simulation and experiment was conducted with a smooth casing as a reference case, and the computed and experimental results were compared in terms of performance curves, downstream flow properties and Mach number contours. Subsequently, the performance curves for each test case with a single casing groove were obtained from the numerical results and compared with each other to determine the appropriate position and height of the groove for increasing the stall margin. A casing groove installed near the leading edge was found to be effective for expanding the stable operating range in a transonic compressor, giving about 3% point improvement in the stall margin at the cost of a small drop in efficiency at the design point. An attempt was also made to understand the underlying mechanism of the casing groove based on the analysis of the numerical flow data.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献