Image Restoration by Learning Morphological Opening-Closing Network

Author:

Mondal Ranjan1,Dey Moni Shankar2,Chanda Bhabatosh1

Affiliation:

1. Indian Statistical Institute , Kolkata , India

2. Indian Institute of Technology , Bombay , India

Abstract

Abstract Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net

Publisher

Walter de Gruyter GmbH

Subject

General Economics, Econometrics and Finance

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On optimizing morphological neural networks for hyperspectral image classification;Sixteenth International Conference on Machine Vision (ICMV 2023);2024-04-03

2. Sunspots Identification Through Mathematical Morphology;Solar Physics;2024-01-23

3. Boats Imagery Classification Using Deep Learning;Lecture Notes in Networks and Systems;2024

4. Pinewood Knot Detection Method Using Color Analysis;2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2023-06-29

5. An attention mechanism and multi-feature fusion network for medical image segmentation;Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3