Generation of lignin polymer models via dehydrogenative polymerization of coniferyl alcohol and syringyl alcohol via several plant peroxidases involved in lignification and analysis of the resulting DHPs by MALDI-TOF analysis

Author:

Shigeto Jun1,Honjo Hiroki1,Fujita Koki1,Tsutsumi Yuji2

Affiliation:

1. Faculty of Agriculture , Kyushu University, 6-10-1 Hakozaki, Higashi-ku , Fukuoka 812-8581 , Japan

2. Faculty of Agriculture , Kyushu University , 6-10-1 Hakozaki, Higashi-ku , Fukuoka 812-8581 , Japan , Phone: +81-92-642-2988, Fax: +81-92-642-2988

Abstract

Abstract The mechanism of lignin dehydrogenative polymerization (DHP), made by means of horseradish peroxidase (HRP), was studied in comparison with other plant peroxidases. Interestingly, HRP is efficient for guaiacyl type polymer formation (G-DHPs), but is not efficient in the case of syringyl type DHPs (S-DHPs). It was previously demonstrated that lignification-related Arabidopsis thaliana peroxidases, AtPrx2, AtPrx25 and AtPrx71, and cationic cell-wall-bound peroxidase (CWPO-C) from Populus alba are successful to oxidize syringyl- and guaiacyl-type monomers and larger lignin-like molecules. This is the reason why in the present study the DHP formation by means of these recombinant peroxidases was tested, and all these enzymes were successful for formation of both G-DHP and S-DHP in acceptable yields. CWPO-C led to S-DHP molecular size distribution similar to that of isolated lignins.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3