Comparison of physical and thermal properties of various wood-inorganic composites (WICs) derived by the sol-gel process

Author:

Hung Ke-Chang,Wu Jyh-Horng

Abstract

AbstractThe physical properties and thermal decomposition kinetics of wood-inorganic composites (WICs) were in focus, which were prepared from methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TTIP) by the sol-gel process. The hydrophobicity and dimensional stability of the composites were better than those of unmodified wood (Wcontr), but the performance of SiO2-based WICs (WICSiO2) was the best. The SEM-EDX micrographs show that silica is only distributed within the cell wall of the WICSiO2. By contrast, titania was deposited principally in the cell lumens of the WICTiO2. The thermal decomposition kinetic experiments show that the average apparent activation energies with conversion rates between 10% and 70% were 156–168 (Wcontr), 178–180 (WICMTEOS), 198–214 (WICTEOS) and 199–204 (WICTTIP) kJ mol−1at the impregnation level of 20% weight gain. The reaction order values calculated based on the Avrami theory were 0.51–0.57, 0.39–0.51, 0.36–0.47 and 0.28–0.51 in the same order of species indicated above. Accordingly, the dimensional and thermal stability of the wood could be enhanced effectively by the sol-gel process with silicon- and titanium-based alkoxides.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference94 articles.

1. Decay resistance of softwoods and hardwoods thermally modified by the Thermovouto type thermo-vacuum process to brown rot and white rot fungi;Holzforschung,2016

2. Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane;J. Sol-Gel Sci. Technol.,1994

3. Computational aspects of kinetic analysis;Part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta,2000

4. Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites;J. Sol-Gel Sci. Technol.,2012

5. Wood-inorganic composites prepared by sol-gel processing I;Wood-inorganic composites with porous structure. Mokuzai Gakkaishi,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3