Model Uncertainty and Model Averaging in Regression Discontinuity Designs

Author:

Button Patrick

Abstract

AbstractParametric (polynomial) models are popular in research employing regression discontinuity designs and are required when data are discrete. However, researchers often choose a parametric model based on data inspection or pretesting. These approaches lead to standard errors and confidence intervals that are too small because they do not incorporate model uncertainty. I propose using Frequentist model averaging to incorporate model uncertainty into parametric models. My Monte Carlo experiments show that Frequentist model averaging leads to mean square error and coverage probability improvements over pretesting. An application to [Lee, D. S. 2008. “Randomized Experiments From Non-Random Selection in US House Elections.”

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Economics and Econometrics,Statistics and Probability

Reference66 articles.

1. Model Selection Inference Facts Fiction;Leeb;Econometric Theory,2005

2. Bayesian Model Averaging Tutorial;Hoeting;Statistical Science,1999

3. Least Squares Model Averaging;Hansen;Econometrica,2007

4. Model Selection An Integral Part of Inference;Buckland;Biometrics,1997

5. Model Selection Inference Practical Theoretic Approach New York Verlag;Burnham;Information,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3