Diagnostic accuracy of genetic markers for identification of the Lr46/Yr29 “slow rusting” locus in wheat (Triticum aestivum L.)

Author:

Bobrowska Roksana1,Noweiska Aleksandra1,Spychała Julia1,Tomkowiak Agnieszka1,Nawracała Jerzy1,Kwiatek Michał T.1

Affiliation:

1. Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland

Abstract

Abstract Wheat leaf rust, caused by fungal pathogen Puccinia triticina Erikss, annually contributes to production losses as high as 40% in susceptible varieties and remains as one of the most damaging diseases of wheat worldwide. Currently, one of the major challenges of wheat geneticists and breeders is to accumulate major genes for durability of rust resistance called “slow rusting” genes using marker-assisted selection (MAS). Until now, eight genes (Lr34/Yr18, Lr46/Yr29, Lr67/Yr46, Lr68, Lr74, Lr75, Lr77, and Lr78) conferring resistance against multiple fungal pathogens have been identified in wheat gene pool and the molecular markers were developed for them. In MAS practice, it is a common problem that cultivars exhibiting desirable marker genotypes may not necessarily have the targeted genes or alleles and vice versa, which is known as “false positives.” The aim of this study was to compare the available four markers: Xwmc44, Xgwm259, Xbarc80, and csLV46G22 markers (not published yet), for the identification of the Lr46/Yr29 loci in 73 genotypes of wheat, which were reported as sources of various “slow rusting” genes, including 60 with confirmed Lr46/Yr29 gene, reported in the literature. This research revealed that csLV46G22 together with Xwmc44 is most suitable for the identification of resistance allele of the Lr46/Yr29 gene; however, there is a need to clone the Lr46/Yr29 loci to identify and verify the allelic variation of the gene and the function.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3